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Abstract

We study a semi-analytical model of convection in a rapidly-rotating,
differentially-heated annulus with sloping top and bottom 1lids. Rapid
rotation leads to a preservation of relatively simple, two-dimensional (2-D)
structure of the experimentally-observed flow, while temporal complexity
increases with the Rayléigh number. The 2-D wodel exhibits a sequence of
bifurcatioﬁs from steadily-drifting, azimuthally-periodic convection columns,
also called thermal Rossby waves, through vacillation and a period—doubling
cascade, to aperiodic, turbulent solutions.

Our semi-analytical results match to within a few percent previous numerical
results with a limited-resolution 2-D model, and extend these results, due to
the greater flexibility of the model presented here. Two types of vacillation
are obtained, which we call, by analogy with classical nomenclature of the baro-
clinic annulus with moderate rotation rates, amplitude vacillation and tilted-
trough vacillation. Their properties and dependence on the problem's nondimen-—
sional parameters are investigated. The period-doubling cascade for each type of

vacillation is studied in some detail.

KEY WORDS: Convection, deterministic chaos, rotating annulus, turbulence,

vacillation.



1. INTRODUCTION

Convection driven by centrifugal buoyancy in a rotating cylindrical annulus
is an interesting research topic for a number of reasons. The original motiva-
tion for investigating this subject arose from the desire to understand thermal
convection in rotating sphérical fluid shells and spheres (Busse, 1970), such as
planetary cores and deep planetary atmospheres. Convection in the Earth's core
and in the outer parts of the major planets shares several basic dynamical prop-
erties with the drifting convection columns that can be observed in a rapidly-
rotating cylindrical-annulus experiment. There are important physical effects,
such as the Lorentz force exerted on the flow by magnetic fields and the effects
of fully-developed turbulence, which cannot easily be modelled in 1laboratory
experiments (Ghil and Childress, 1987, Chapters T7-9). But as long as the
Coriolis force dominates, the correspondence between planetary-scale features and
those observed in the laboratory seems to be closer than usually expected in non—
rotating systemé.

Further comparison with laboratory experiments is another attraction of the
- rapidly-rotating annulus problem. In contrast to the classical, baroclinic
annulus experiiénts (Fultz et al., 1959; Hide, 1977; Ghil and Childress, 1987,
Chapter 5), the rotation rate of the centrifugally-driven convection experiment
is typically very high, such that the centrifugal force becomes comparable to or
larger than gravity. Because of the rapid rotation of the annulus, the experi-
mental data are not easily obtainable and the results that have been acquired so
far (Busse and Carrigan, 1974; Azouni et al., 1986) need to be extended in order
to provide a detailed comparison with the results of nonlinear theories. On
the other hand, rapid rotation tends to maintain the two-dimensional (2-D) struc-

ture of the flow field, in a manner analogous to large, parallel magnetic fields



in Rayleigh-Bénard convection of an electrically condu;ting fluid (Libchaber,
1985), while the temporal and 2-D spatial complexity increases markedly with
Rayleigh number in both cases.

A third motivation for studying convection in a rapidly-rotating annulus is
the important modification of the classical Rayleigh—Bénard problem introduced
by the Coriolis'force, owing to a rotation vector which is perpendicular to the
direction of the effective gra;ity provided by the centrifugal force. When the
end walls bounding the annular fluid domain in the axial direction are parallel,
there is actually very little difference between the convection rolls aligned
with the axis of rotation in the annulus, and the convection rolls in a horizon-
tal fluid layer heated from below. The.Coriolis force is balanced by the pres-
sure and only the thin Ekman layers at the end walls may exert an influence on
the dynamics of the rolls or columns.

If, however, the end boundaries are of conical shape such that the height of
the annular region in the axial direction varies with distance from the axis, a
profound influence of the Coriolis fotrce on the flow becomes noticeable. Instead
of stationary convection relative to the rotating frame of reference, drifting
columns, also called thermal Rossby waves (Busse, 1986; Or and Busse, 1986), are
obéérved and the critical value of the Rayleigh number for the onset of convec-
tion experiences a strong increase. For asymptotically large rotation rates Q,
the critical Rayleigh number follows an Qq/a-dependence. Concurrently, the
Rayleigh numbers for the onset of higher modes, i.e. those with one or more nodes
in the radial dependence, become relatively close to the critical Rayleigh number,
while the 2-D structure of the flow field persists. This property opens up the
possibility for mixed—-mode convection which does not seem to occur, at least not
in this particular form, in ordinary Rayleigh-Benard convection, but does appear

in the baroclinic annulus problem with moderate rotation rates (Ghil and




Childress, 1987, Section 5.3).

The secondary and -subsequent bifurcations introduced by mixed-mode convec-
tion are the subject of the present paper. The semi-analytical treatment
follows the outline given by Busse (1986), in collaboration with R.-q. Lin, which
will be referred to as B86 in the following. One goal of the analysis is to
understand the bifurcation structure of the codimension—2 problem presented by
the interaction of the first and the second mode, and to relate it to the results
of the numerical computations for the fully-nonlinear problem (Or and Busse, 1986;
0B86 in the following).

Numerical computations with maﬁy degrees of freedom can provide greater
detail in the flow fields and in the fluxes of heat and momentum (e.g., Hathaway
and Somerville, 1987). But they do not permit an extensive study of solution
dependence on parameters. Hence the possibility of finding solutions of rela-
tively simple equations which reproduce the numerical results, at least qualita-
tively, is of considerable importance. The dependence of certain features of
physical interest, such as the mean zonal-flow speed or the various frequencies
of oscillations, on the parameters of the problem can more easily be elucidated
in the semi-analytical approach. In addition, new types of solutions are
found, as we shall see.

This paper focusses on spatially-periodic solutions. Its main purpose is
to validate the semi-~analytical approach against OB86, as far as the numerical
results went, and to obtain new results on higher bifurcations and on transiton
to irregular, chaotic flow.

The paper starts with the mathematical formulation of the problem in Section
2. Stationafy mixed-mode solutions and their stability properties are analyzed
in Section 3. The instabilities introduce time dependences which can no longer

be eliminated by the transformation to a drifting frame of reference. Both a



Runge-Kutta integration in time and a Fourier analysis of the time dependence
(Urabe, 1967) are used to explore higher bifurcations and transition to turbu-

lence in Section 4. Concluding remarks follow in Section S.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

We consider the fluid flow in a cylindricél annulus heated from the outside,
cooled from the inside, and rotating about a vertical axis aé shown in Figure 1.
We use the gap width D between the cylindrical walls as length scale, Dz/v as
time scale, where v is the kinematic viscosity, and vAT/k as.the temperature
scale, where AT = TZ - T1 is the temperature difference between the walls and k
is the thermal diffusivity of the fluid. Throughout the analysis the small-gap

1limit will be assumed, D<K<r where r,. is the mean radius of the annulus. This

o’ o
allows us to introduce a Cartesian system of coordinates with the x-coordinate
in the radial direction, the y—-coordinate in the azimuthal direction, and the z-
coordinate in the axial direction; in dynamic meteorology and physical oceanogra-
phy the azimuthal direction is calied zonal, and we shall use the two terms inter-
changeably. The effective gravity induced by the centrifugal force points in the
radial direction. An additional component of gravity in the axial direction
causes little change in the limitlof high rotation rates in which we are inter-
ested and turns out to be irrelevant for the following analysis (Busse, 1970).
[Fig. 1 near here, pleasel

Convection sets in as columnar motions, or thermal Rossby waves, when the
Rayleigh number R exceeds a critical value Rc' Due to the rapid rotation rate,
and in accordance with the Taylor-Proudman theorem (e.g., Ghil and Childress,
1987, pp. 14-15), the convective flow is nearly independent of z and satisfies the

geostrophic balance approximately,



v = ngW(x,y,t)+g' , (2.1)

where k is the unit vector parallel to the axis of rotation and v denotes the
small ageostrophic part of the motion. As has been shown in detail in earlier
derivations (B86; Busse and Or, 1986a), the function ¥ and the corresponding
deviation 0 from the basic temperature distribution, which is linear in x,

satisfy the dimensionless equations

* 2
[at+ay¢ax-ax¢ay]A2¢—n aywaszaye =0 |, (2.2a)
P[at+ay¢ax—axway]¢+ay—aze =0 . (2.2b)
Here 3t = 3/9t, A2 denotes the two-dimensional Laplacian, Az = a: + ai, where
[ ]
a: = az/axz, 33 = leayz, and the three dimensionless parameters R,n , and P are
defined by
whlrar ,  anp’a
R=—m—, n =—, P=v/k , (2.2¢,d,e)
VK Lv

vhere v is the coefficient of thermal expansion, Q is the angular velocity of
the rotating system, L is the mean height of the annular region, and o is the
tangent of the angle x between the conical end boundaries of the annular region
and a horizontal plane. R is a Rayleigh number, P is the Prandtl number and n*
a parameter measuring the vortex-stretching effect of radial displacements.

The parameter n‘ is equivalent to the parameter B of dynamic meteorology
and physical oceanography; as in the 8-plane approximation, where the meridional
dependence of the Coriolis parameter f is linearized, f = fo + Bx. This equiva-
lence manifests itself in the Rossby-wave like dynamics of our drifting convec-
tive columns, hence the terminology thermal Rossby waves. Although the angle Y
is assumed to be small, n‘ can become arbitrarily large in the limit of vanishing

Ekman number E, where E = v/QDZ. As'emphasized in B86, only small changes in the




quantitative aspects must be expected if no becomes of order unity, as it usually
does in the experimental realizations of the problem.
In the following we study solutions of equations (2.2) subject to the stress-

free boundary conditions
1
=93 ¢$y=06=0 atx=1%x 2 (2.3)

as explained in the earlier papers mentioned above. For the purposes of the

present paper, the conditions (2.3) offer the advantage that simple expressions

are obtained for the solutions wb(n), eo‘“’ of the linearized form of system
(2.2),
Wén) = sinﬂn(x+%)exp(iay+imt), eé"’= iaWén)[imP+n2ﬂ2+a2]-1 . (2.4)

These expressions describe drifting convection columns and solve equations (2.2)
after nonlinear advection terms have been neglected, provided the following

relationships for w and R are satisfied:

]

= mé“)= el 5 3 , (2.5a)
( 14P Y (n"n"+x™)
* 2

R =R (n) = (n2ﬂ2+a2)3a-2 + (D—B) /(n2n2+az) . (2.5b)

(0] 1+P
Of particular physical interest are those values of & for which Rén) reaches

t ]
a minimum. In the asymptotic case of large n , the minimizing value aén) and

the corresponding value Rén) are given by

a = nl/3 (4 - L 22, 723,

(n)_ 4/3 2 2 -2/3
c P 12 o] T c

(3+n'n +...) , (2.6a,b)
nP np




where np is defined by

I I
o = J2( 149 ) (2.6c)
(n)_-4/3 .
The critical values Rc “p associated with distinct values of n approach each

other for large n‘. This fact is the basis for the analytical theory of nonlinear
solutions of Eqs. (2.2) which are generated by the interaction of two modes of the
form (2.4). The interaction between the modes with n = 1 and n = 2 is of parti-~
cular interest, since they have the lowest critical values (B86), and the follow-
ing analysis will be restricted to this case.

Starting with the Ansatz

*o = {A(t) cosal(y=ct) + A(t) sin(ay—ct)} 8in n(x+%)

+ {B(t) cosal{y—ct) + B{t) sin(ay—ct)} sin Zn(x+%) . z.D

we shall try to obtain approximate sblutions of equations (2.2) by expanding ¥
in a series
¥F=¥% *¥ T +... ; (2.8)

v ~

here *1 represents terms that are quadratic in the amplitudes R, A, B, and é;
WZ represents the cubic terms, and so on. In order to obtain equations for
these amplitudes in terms of R and the average drift rate c of the solutions,
terms up to the cubic order in (2.2) must be taken into account.

The detailed calculations are omitted here. After the representation
(2.8) and the correspoﬂding one for 6 have been inserted into the basic equations
(2.2), the solvability conditions for the cubic order are obtained by multiplying
Eq. (2.2a) by Zwén)*(Piwén)+nzﬂ2+a§) and Eq. (2.2b) by ZRén)eén)‘(Pimé“)+nzﬂ2+a§)

(where the star indicates complex conjugation), averaging the result over the

- fluid layer and adding the two equations for n = 1 and n = 2, respectively. Real
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and imaginary parts of the equations for n = 1,2 then give rise to the following

A

. v A v
four equations for the time dependence of A(t), A(t), B(t), and B(t):

WL AR o ¢ A2+ A% - B2 + Bdyg +£,) - £,(B2-B2) + 2f, BBIA
1 dt o 0 o 1 2 3
(1) 1) -1 (1) 22,72 2 22 ~r 7
+ {Q(R Ro ) (c y Ya ani[c+a Wy + h1 (B"+B™) + hz (B™-B™) 2h3BB]‘A ,
(2.9%a)
d_ % _ rpp(l) _ V2,72, _ (R2,02 _ 22 o _ avan
H1 dt A = [R Ro fo (A™+A™) (3.+B )(go+f1) fz(B B™) 2f3BB]A
(1) 1) -1 (1D by h 22 ¥2 AR
{Q(R R~ - (ec ~"Da aui[c+a W+ hy (B® +B™) + hZ(B BY) + 2h3BB] A,
(2.9b)
d o _ rop(2) _ 2,52 v2,72 _ Y2_72 ~o
M, £ B (R-R_ g, (1; +BY) - (ATHAT) (f +g,) = g, (A"-AT) + 2g4AATB
(2) (2) -1 (2) ~2.72 Y2 %2, _ ~\a
+ {Q(R Ro ) (c , Y& aMz [c+a W + k1 (A"+A7) + k2 (A™-A™) ZkSAA] B,
(2.9¢)
d 3 _ rpo_p2) _ 22.52. _ 12,72 - ~2_72, _ a4
M, € B = [R-R_ g, (BB - (A"AT) (f +g) - g, (A"-AD) 2g5AATB
(2) (2) -1 (2) ~2,.72 ~2_72 s
{Q(R Ro ) (c <, a aHZ (c+a @ + k1 (A"+A") + kz (A™-A") + 2k3AA] B .
(2.9d)
The constants fo’ g, are given by
£ = Pzaz(ﬂ2+az) g = P2a2(4ﬂ2+qz) (2.10)
° 8[w;1)2P2+(ﬂ2+«2)2] 0 8[&;2)2P2+(4ﬂ2+02)21

The other constants are given by lengthy expressions which the authors will happily

provide upon request.
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In the next section we qonsider steady solutions of Eqs. (2.9) and analyze
their stability. 1In Section 4 a numerical analysis of time—dependent solutions

will follow.

3. STEADILY DRIFTING CONVECTION COLUMNS

The simplest solutions of Eqs. (2.9) are the "pure" solutions

Vo A _ ~ v
Aen? - g1 - M, B=B=0, (3.1a)
(e} (o] 0
and
¥g ~2 2. 1 (2) A
B%8% = ®R%g, , c=-w?/a, A=A=0 . (3.1b)

Any further restriction on R,}v\ or on g,l; is precluded by the translational
invariance in the y-direction of the basic equations (2.2). Higher—order
terms for the solutions (3.1) have been evaluated by Busse and Or (1986a).

In the present context the "mixed" solutions are of primary interest. In
setting R = 0, we break the symmetry of K and R imposed by the translational

invariance and obtain

2 (1) _o(2) ., ~1
A® = [(f1+f2 cos2y + f3 sin 2Y) (R Ro ) + N (R Ro IN (3.2a)

B™+B” = [(g1+g2 cos2y + 83 sian)(R-RéZ)) + fo (Ro )-R)]N'_1 , (3.2b)

where x and N are defined by

~A VvV

tany = B/B, N

1]}

(go+f1+f2c052x+f

3
The drift rate c and the relative phase x are determined by the equations

1) 52,.°2
®

c + o /x = (ki-k2c052x+hssin21)(B +B7) (3.4a)
c + 0 2 /a = (k, +k_cos2y+k, sin2y) A2 (3.4b)
o 17 C08LXTRgSINAX : '

sian)(f0+gi+gzc052x+3331n2x) - gofo . (3.33,b)
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The results of the amplitude expansion to second order for the mixed—-mode
solution agree well with the numerical results obtained by OBS86. In the
presence of nonlinear interactions between multiple waves, OB86 called this the

mean—-flow solution, since it 1is characterized by a strong mean 2zonal flow,

" induced in their calculations entirely by the convection (compare also Hathaway

and Somerville, 1987, where convection reinforced an imposed zonal jet). The
zonal-flow component represents a differential rotation, or mean shear, anti-
symmetric about the midplane of the small gap. There are in fact two such solu-
tions (B86), differing by a sign, and this fact affects the nature of bifurcations
leading to the pair of mean-flow solutions. Figures 2a and 2b, which refer to
n* ='700 and n' = 1500, respectively, show how the mean-flow instability thresh-
old, defined in terms of (B-Bc)/Bc, varies with a. Here B = RP is the buoyancy
parameter, and r; = 0(103) corresponds to planetary applications, allowing for an
eddy viscosity 0(106m2/s) (OB86). The curves in panels (a) and (b) of this figure
agree so closely with those computed numerically by Or (1985, Figures 11 and 20}
that we have refrained from reproducing here the latter.
[Fig. 2 near here, pleasel

We have also found a solution not obtained in OB86. Figure 3 shows bifurca-
tion diagrams as plots of the amplitude versus the buoyancy parameter B. The
numerical method of OB86 gave only the successive bifurcations shown in Fig. 3a.
We call this bifurcation tree Solution I. The phase shift between the two waves
in Solution I is large, x = % %?. The bifurcations of the new solution, which we
call Solution II, are shown in Fig. 3b. The phase shift in Solution II is small,
X = % 1;—2, and this solution arises at a slightly higher critical value of
R, R', = 30810 > R, = 30680 (at & = @ = 9.37) than Solution I.

(Fig. 3 near here, pleasel
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The two mixed-mode solutions, related by a simple symmetry, appear as a
single branch in the bifurcation diagrams of Figures 3a,b, which show only the
absolute values |Al and IB| of Az = RZ + RZ and B2 = 32 + EZ. But the existence
of the pair is reflected in the fact that the mixed-mode branch is perpendicular
to the pure-solution branch from which 1; emerges (shown as the branch (A = Ap’
B =0 for_Solution I and the branch (A = 0, B = Bp) for Solution II), at the
bifurcation point. This reflects the pitchfork~type of bifurcation involved,
imposed by the symmetry of the pair (Guckenheimer and Holmes, 1983, Section 3.4;
see also Ghil and Childress, 1987, Figure 5.8, point B, for a similar situation
in the classical, baroclinic annulus).

The stability of thg‘mixed-mode solution branches (An' B') depends on the
sign of N, Eq. (3.3b). An analysis analogous to that of Busse and Or (1986b)
for ordinary Rayleigh-Bénard convection shows that these solutions are stable
wvhen N > 0. 1In Figure 4 the curve N = 0 is shown in the plane of Prandtl number
P and geometric vortex-stretching number n.. Prandtl numbers near 1.0 are
realistic for the atmospheres of the outer planets, and for the laboratory
experiments cited in Section 1.

(Fig. 4 near here, pleasel

The analysis giving the neutral curve in Figure 4 is based on an asymptotic
expansion valid at the point of onset of convection R = Ri'
the actual stability of mixed solutions only in the limit of n‘ 2 o, Indeed,

It gives therefore

[
comparison of Figures 2b and 2d, valid for n = 1500, with 2a and 2c, for

*®

*
n = T00, shows that the successive bifurcations tend to collapse into R, as n

1
increases, for both Solution I (Figures 2a, b; see also B86, OB86) and Solution
II (Figures 2c, d).

. )
For lower .values of n , higher-order correction terms are necessary, and

. _
for n - 0 the analysis breaks down. An excellent review of multiple bifurca-




tions for competing instabilities appears in Coullet and Spiegel (1983), and
the theory works clearly quite well for the ﬁigh values of n* in which we are
interested. The validity of its application to the lower rotation rates of the
classical, baroclinic annulus appears unfortunately more questionable.

4. TIME-DEPENDENT SOLUTIONS.
4a. Bifurcation structure

Part of the attraction of the rapidly-rotating annulus, as mentioned already
in the Introduction, is that complex temporal behavior can be studied in the con-
text of spatially 2-D, and hence analytically simple, structures. Time-dependent
solution branches, associated with the two stationary mean-flow solutions discus-
sed above, emerge. We still call the corresponding branches Solutions I and II,

respectively: the corresponding phase shifts xI and xII now vary with time, but

xI(t) >> xII(t) for all times and for all parameter values we investigated.

I Figure S shows the successive bifurcations of Solution I (left part of the
figure) and Solution II (right part), as a function of the buoyancy parameter B,
for P = 1.0 and'n. = 700. The period T of the first oscillatory instability is
rationally unrelated to the period of propagation 2n/w of the thermal Rossby wave,
for almost all parameter values. Hence the whole regime of flow associated with
the period T and its multiples (see below) can be termed vacillating, by analogy
with the classical, baroclinic annulus situation (Hide, 1977; Ghil and Childress,
1987, Sec. 5.3). The nature of the vacillation in the zonally-periodic waves of
mixed mode will be studied in some detail in Section 4b.

[Fig. 4 near here, pleasel

A period-doubling cascade, all the way to aperiodic, chaotic or turbulent

behavior, is in evidence for”both solution branches. The ratios

Bn-Bﬁ—l
6n = W— (4.1)
n+t1 n




are known to converge to a value 8§ £ 4.67 (Feigenbaum, 1984). Using the
trangsition to aperibdic behavior as Bn+1’ we have the limiting value 6n 2 4,78
for Solution II and 65 2 4,09 for Solution I. The best experimentally-
determined value, for Rayleigh-Bénard convection in liquid helium constrained
by a magnetic field, is 6n Z 4.4 (Libchaber, 1985).

Periodic windows within the aperiodic regime beyond transition are part of
the full Feigenbaum scenario (Kadanoff, 1983). They have also been observed in
numerical studies of simple models of large—-scale atmospheric flow (Pedlosky
and Frenzen, 1980; Legras and Ghil, 1983). The periods associated with these
wvindows are (2k+1)T, where T is the basic period. For Solution I, one observes
a period of 3T, 2 0.66 at B = 39719.97 and ST1 2 1.1 at B = 39721.66. For

1
Solution II, periods of 3T, 2 0.42 and 7T, = 0.98 are observed at B = 40375.43

2 2
and B = 40383.11, respectively. -

The reappearance of a steady-state solution for larger values of the
parameter is wunrealistic. It is wusually an artifact of the low-order
truncation (Ghil and Childress, 1987, Section S5.3). Such a spurious "re-
simplification" was already encountered by Lorenz (1963b) in a study, similar to
the present one, of the classical annulus experiments. We note that, for
Solution I, good agreement with the numerical results of OB86 is obtained for
B < 39725.33.

Figures 6a and 6b survey the structure of Solutions I and II in the (B—n.)
plane over the region which we have studied. Solid lines in Figure 6a
separate, from lower right to upper left, regions of pure-mode steady states,
simply-periodic, multiply-periodic (2T to 16T) and aperiodic solutions. Lines

in the Figure 6b separate regions of steady state, symmetric simply-periodic,

asymmetric simply periodic, multiply-periodic (2T to 16T) and aperiodic solu-
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tions for the first band: A second region of vacillating solutions is seen in
the upper left-hand corner of the figure. An expanded view of the rectangular
region near n‘ = 700, B = 3.8 x 104 is shown in the insets in the lower right-
hand corner of Figures 6a, b. Transitions between 2T-, 4T-, 8T-, and 16T-
periodic solutions are shown in these insets.

{Fig. 6 near here, pleasel

Figure 7 shows the B-dependence of frequency for solution branches I and
II. The solid lines represent Solution I and the dashed lines Solution II.
The frequency of Solution II is much higher than the frequency of Solution I for
comparable states throughout the whole period-doubling process.
fFig. 7 near here, pleasel

The frequencies of each solution are exactly halved at each bifurcation
point. Between pairs of period-doubling points, the frequencies of each solu-
tion increase slightly. One expects nonlinear oscillators to have amplitude-
dependent and/or parameter-dependent frequencies, whether the period has
doubled or not. Still, it does not seem to be widely noticed that the "doubled"
period will in general only be approximately double the period observed at lower
values of the bifurcation parameter (cf. Legras and Ghil, 1983).

The thresholds of vacillating instability for Solutions I and II are plotted
in Figure 8 as the critical buoyancy number versus the azimuthal wavenumber «.
The cases shown in Figure 8a and 8b are for Prandtl number P = 0.3 and P = 1.0,
respectively, with n‘ = 700. The solid lines represent Solution I and the dashed
lines represent Solution II.

(Fig. 8 near here, pleasel

From Figure 8, we can first see that both the mean—-flow and vacillating

instabilities of Solution ‘I always appear earlier than the corresponding

instabilities of Solution II as the buoyancy number increases. Secondly, the




_17—

mean-flow instability'occurs for lower B than the wvacillating instability in
Solution I as long as the Prandtl number is large (Fig. 8b); this is true of Solu~
tion II independently of P (Figures 8a and 8b). Third, when P = 0.3 and the wave
number a is large, the mean—flow instability boundary of Solution I is lower
than the vacillating instability boundary. However, the two boundaries grad-

ually approach each other as & decreases. They cross at the critical point of

2
the vacillating instability boundary (%2 =0, Q—% > 0). As & continues to
x

decrease, the boundary of the mean-flow instability occurs at greater B than
~ the boundary of the vacillating instability, and the distance in B between the
two boundaries increases. All results for Solution I are in total agreement
with those for the numerical model of OB86 (Figures Tc, d).

Figures 9a and 9b show the relative position of the mean-flow and vacillat-
ing instability boundary of Solutions I and II, respectively, on a graph of B
against P. The two boundaries cross at P 2 0.2 and P 2 2.9 for Solution I and
the vacillating instability occurs at larger B than the mean—flow instability
for P between these two values (Figure 9a). This also agrees well with the
numerical results obtained by OB86. For Solution II (Figure 9b), the relative
positions of the two stability-threshold curves are the same, both curves are
somevhat higher (larger B for same P), the crossover points are P 2 0.6 and P =
2.3, and the downturn in the vacillation threshold at low P is not as pronounced
as in Solution I.
[Fig. 9 near here, pleasel

4b. Solution properties

To ascertain the reliability of our numerical results for time-dependent
solutions, we compare next two methods of solving Eqs. (2.9) for a simply-
periodic, vacillating solution. Figure 10a shows the absolute amplitudes of

the first (solid) and second (dashed) modes in the streamfunction of Solution
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II, as functions of time, using a fourth-order Runge-kutta method. Figure 10b
shows the variation of the same two modes as calculated by a Fourier-decomposi-
tion method (Urabe, 1967, pp. 225-228) in which the time dependence of a
periodic solution is projected onto the fundamental period and its harmonics,
solving for the undetermined coefficients by a Newton—-Raphson method. After
adjusting for the arbitrary phase of the vacillation, the two solutions differ
by only a few percent. The Fourier—-decomposed solution is, by construction,
exactly periodic, while the Runge-Kutta solution shows very slight, bounded
deviations from periodicity.
(Fig. 10 near here, pleasel

The power spectrum of Solution II, using both methods, is shown in Figure
11. Panels (a) and (c¢) show the simple solution (B = 38893), while (b) and
(d) show the solution after period doubling (B = 39156). The power spectra for
the same solution computed by the two different methods agree exactly in the
position of the peaks and quite well in their amplitude. The largest peaks in
the simple solution (panels (a) and (c¢)), represent the fundamental period; the
smaller peaks are harmonics. After period doubling (panels (b) and (d)), the
fundamental peak and its harmonics are accompanied also by a peak at half the
main frequency, with amplitude intermediate between the fundamental and its
first harmonic.
(Fig. 11 near here, pleasel

Figure 12 shows the time evolution for streamfunction amplitudes of modes
1 and 2 in Solution II, as a function of buoyancy number. The solution is
simply-periodic in panel (a) (B = 38893), it has undergone periodic doubling in

panel (b) (B = 40000), period quadrupling in panel (c) (B

i

40350) and it is
aperiodic in panel (d) (B = 4037S). The slight distortion of the solution in

the time domain as it undergoes period doubling in the frequency domain (Figure



11) is quite striking. The period of the vacillation increases from 0.15 to 0.28
and then from 0.55 to infinity as the buoyancy number increases.
[Fig. 12 near here, pleasel

Figure 13 shows the phase plane of kinetic energy, E vs. dE/dt, for Solution
I (panel (a)) and Solution II (panel (b)). Figures 14a and 14b show the corre-
sponding phase planes for the‘velocity components, u vs. V.

[(Figs. 13 and 14 near here, please]

The features of the successive bifurcations are clearly apparent in these
four figures. For Solution I, with the large phase shift between modes (Figures
13a and 14a), transition occurs from (i) the simply-periodic wvacillation, to
(ii) period doubling, (iii) period quadrupling, through (iv) an 8T-periodic solu-
tion to (v) an aperiodic solution. For Solution II, with the small phase shift
(Figures 13b and 14b), the transition occurs from (i) the symmetric simply-
periodic vacillation to (ii) the asymmetric one (best visible in Figure 14b),
through (iii) period doubling and (iv) quadrupling, on to (v) an 8T-periodic and
(vi) an aperiodic solution.

A Poincare section through the solution orbits in the system's four-dimen-
sional (4-D) phase space 1is obtained as follows: The 3-D "hyperplane"
arctan A/E = /3 is used as a surface of section. The points of intersection
betwveen the one-dimensional (1-D) trajectory and this 3-D surface are then pro-
jected onto the ZfD (A,B)-plane, leading to the Poincare maps in Figure 15.
Lorenz (1984) has used a somewhat different approach for the detailed study of a
strange attractor's local structure in 4-D space by intersectiohs with a 2-D
plane.

[Fig. 15 near here, pleasel
Our mainvpurpose here is the study of the successive stages of transition

from thermal Rossby waves, via mixed-mode mean-flow solution, vacillation and
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period-doubling cascade to chaotic flbﬁ. The stage in the period-doubling cascade
is clearly indicated by the number of points in the Poincare maps of Figure 15,
n points for an nT-periodic solution. While true aperiodicity cannot be inferred
conclusively from any numerical solution of finite length, the difference between
Figures 1Sa(iv) and 1Sa(v) for Solutiop I, and between Figures 45b(vi) and 15b(v)
for Solution II, is very suggestive of a strange attractor having replaced the
16T~periodic limit cycle, as indicated in Figures 5, 6 and 12-14.

Successive '"snapshots" on the streamfunction fields for Solution I and II
during one full simple period are shown in Figures 16a and 16b, respectively.
A single vertical column appears between the two side walls at x = -0.5 and
X = 0.5. Because the vertical column moves in the azimuthal direction y with
speed ¢, we have allowed the coordinate system to move with the same speed,
making ¢ = 0.

[(Fig. 16 near here, pleasel

The periods in Figures 16a and 16b are slightly different, and these periods
change with B as indicated in Figure 7. The largest difference between the two
figures, however, is in the asymmetric nature, and stronger vacillation, of the
convection columns in panel (b).

Solution I exhibits what is called amplitude vacillation in the more slovly
rotating, classical annulus: the maximum range of the (nondimensional) stream-
function varies between 25 units and 35 units, with little change in tilt or
general shape. Solution II on the other hand shows shapé or tilted-trough
vacillation, with a slightly smaller relative changelin amplitude, but a pro-
nounced oscillation between forward and reverse tilt of the waves.

It is interesting that in the annulus with moderate rotation rates,
barotropic effects predominate in shape vacillation, while baroclinic effects

are more involved in amplitude vacillation (Pfeffer and Chiang, 1967; Ghil and
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Childress, 1987, Sec. 5.5). This seems to agree with the large phase shift
between waves 4in our Solution I, and the almost vanishingly-small shift in
Solution II. The analogies need to be analyzed further, along the lines of B86

and Busse and Or (1986a).

S. CONCLUDING REMARKS

High rotation rates and the accompanying Taylor—-Proudman effect in a differen—
tially-heated annulus with sloping top and bottom walls lead to nearly two-dimen-—
sional (2-D) drifting convection columns. A semi-analytic 2-D model was first
proposed by Busse (1986, referred to.as B86 throughout our paper) to study a
sequence of bifurcations in the behavior of these columns, while Or and Busse
(1986, OB86 throughout) obtained partial results on the first few bifurcations
wvith a nﬁnerical 2-D model of limited resolution.

Using the semi-analytic model, we pursued the bifurcation sequence from
steadily-drifting, azimuthally-periodic columns through wvacillation and a
period-doubling cascade all the way to temporal aperiodicity or deterministic
chaos. In ordinary Rayleigh-Benard convection between parallel plates and in
the differentially-heated annulus with moderate rotation rates, higher temporal
complexity is only attained through three-dimensional (3-D) motions of consider-
able spatial complexity (Buzyna et al., 1984; Hide, 1977; Krishnamurti, 1973;
Libchaber, 1985). Thus the clasgical studies of transition to deterministic
chaos using semi-analytic 2-D models in these two problems (Lorenz, 1963a,b)
serve as qualitative metaphors, rather than as quantitative guide posts for
the observed bifurcation sequence. The rapidly-rotating device, on the other
hand, provides hope that our semi—analytic 2-D results are realistiec.

All the features of our results that could be tested against the numerical

ones of OB86, such as stability thresholds as a function of parameters (Figures
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2 and 8), agree to within a few percent, at worst. The results of OB86, in turn,
seemed to be in reasonable agreement with experimental results (Azouni et al.,
1986; Busse and Carrigan, 1974). In addition to the amplitude wvacillation of
0B86 (Solution I here, Figure 16a), we have discovered a tilted~trough vacilla-
tion (Solution II, Figure 16b), which has frequencies higher than the previous
one by about 507 throughout the period-doubling cascade (Figure 7). The experi-
mental and numerical verification of this tilted-trough vacillation in the
rapidly-rotating annulus is an immediate suggestion for future work.

High rotation rates, aside from imposing a 2-D structure even to temporally-
complex flows, also cause the successive bifurcations to accumulate near the
critical Rayleigh number value for the onset of convection. This effect is
analogous to that of low Prandtl number in ordinary convection (Krishnamurti,
1973). The accumulaiton of bifurcation points is an advantage for the analysis of
competing instabilities by averaging and unfolding methods (Arnold, 1583, Secs.
33-35; Coullet and Spiegel, 1983; Guckenheimer and Holmes, 1983, Ch. 7). But it
makes the careful experimental study of the competing instabilities more difficult.
Hence verification of the present results using a semi-analytic model with a larger
number of modes might be the next step on the road to understanding the transition

to 2-D turbulence in a rapidly-rotating, differentially-heated annulus.
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Figure Captions
Figure 1. Geometrical configuration of the rotating fluid annulus, with
sloping top and bottom "lids".
Figure 2. 1Instability thresholds of pure and mixéd solutions, (B—BC)/Bc as a
function of wavenumber &; P = 1.0. a) n* = 700, b) n* = 1500, for Solution I;
c) n* = 700, b) q* = 1500, for Solution II.
Figure 3. Bifurcation diagrams for pure (subscript p) and mixed-mode (subscript
m) solutions: amplitude variation versus the Rayleigh number R. a) y = =
2n/3. The points Ri' Pu’ Ru’ and Qi in (A, R) coordinates here are associated
with the same points given in (B, &) coordinates in Figures 2a,b. b) x = % n/12.
Points R; and QiI correspond to those in Figures 2c,d. Solid lines represent
stable solutions and dashed lines represent unstable solutions. In both panels
n* = 700, and the bifurcation structure persists for all « > ac we investigated
(compare Figures 2 and 8).
Figure 4. Neutral mixed~-mode stability curve N = 0 for Solution I (solid) and
for Solution II (dashed) in the r]“l ~ P parameter plane, at critical values BC
and «,
Figure 5. Successive bifurcations in Solution I and in the first unsteady band
of Solution II.
Figure 6. Solution structure in the B - n* (buoyancy-Coriolis) plane. a)

Solution I; b) Solution II. P =1.0, a = ac= 9.37.

Figure 7. Frequency dependence on buoyancy parameter for Solutions I and II.
*

n =700, P=1, & = ac.
Figure 8. Mean-flow and vacillating instability boundaries, as a function of
wavenumber ; n* = T700. a)P =0.3, b)P =1.0; ¢) This panel is the same as
panel (a), except it is calculated by the model of OB86, d) Same as panel

(b), except as calculated by the model of OBS86.
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Figure 9. Marginal stability curves for the mean—-flow and vacillating flow
regimes as a function of B vs. P at the critical wavenumber a = ac, and at n‘ =
700. a) Solution I; b) Solution II.

Figure 140. The absolute amplitudes of the first (solid) and second (dashed)
modes of the streamfunction for Solution II, as a function of time. a) The
variation as calculated by a Runge-Kutta method; b) Fourier-decomposition
method. B = 38893, n. =700, P=1, a = ., €= 12.7.

Figure 11. The power spectrum of Solution II in two cases: (a,c) B = 38893,
simply-periodic solution; (b,d) B = 39156, after period doubling. The solution
was calculated by a Runge-Kutta method (a,b) and by Fourier decompositon (c,d),
respectively. P = 1.0, n = 700, & = x.- The two lines correspond to the
spectrum of the two modes, with the first mode having more power than the second
at all frequencies.

Figure 12. Solution II: streamfunction amplitudes of wmodes 1 (solid) and 2
(dashed) as functions of time; n‘ = 700, & = ac. a) B = 38893, b) B = 40000,
c) B = 40355, d) B = 40380.

Figure 13. Phase plane of kinetic energy (change in Kkinetic energy versus
kinetic energy); P = 1.0, n‘ = 700, a = «, - a) Solution I : i) B = 38893,
ii) B = 39240, iii) B = 39645, iv) B = 39704, v) B = 39720; b) Solution II:
i) B = 36500, ii) B = 38893, iii) B = 40000, iv) B = 40350, v) B = 40367,
vi) B = 4037S.

Figure 14. Velocity phase plane, v vs. u. Panels (i)-(v) in Figure 14a
correspond to those in Figure 13a, and (i)-(vi) in Figure 14b to Figure 13b.
Figure 1S. Poincare maps A vs. B. Maps (i)—-{(v) in Figure 15a correspond to
those in Figure 13a and (i)=(vi) in Figure 1Sb to Figure 13b.

Figure 16. Time evolution of the streamfunction field through one full period,
for B = 38893, n‘ = 700, P = 1.0, a = ac, and ¢ = 0. a) Solution I;

b) Solution II.
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